
6
QUERY-BY-EXAMPLE (QBE)

Example is always more efficacious than precept.

—Samuel Johnson

6.1 INTRODUCTION

Query-by-Example (QBE) is another language for querying (and, like SQL, for creating

and modifying) relational data. It is different from SQL, and from most other database

query languages, in having a graphical user interface that allows users to write queries

by creating example tables on the screen. A user needs minimal information to get

started and the whole language contains relatively few concepts. QBE is especially

suited for queries that are not too complex and can be expressed in terms of a few

tables.

QBE, like SQL, was developed at IBM and QBE is an IBM trademark, but a number

of other companies sell QBE-like interfaces, including Paradox. Some systems, such as

Microsoft Access, offer partial support for form-based queries and reflect the influence

of QBE. Often a QBE-like interface is offered in addition to SQL, with QBE serving as

a more intuitive user-interface for simpler queries and the full power of SQL available

for more complex queries. An appreciation of the features of QBE offers insight into

the more general, and widely used, paradigm of tabular query interfaces for relational

databases.

This presentation is based on IBM’s Query Management Facility (QMF) and the QBE

version that it supports (Version 2, Release 4). This chapter explains how a tabular

interface can provide the expressive power of relational calculus (and more) in a user-

friendly form. The reader should concentrate on the connection between QBE and

domain relational calculus (DRC), and the role of various important constructs (e.g.,

the conditions box), rather than on QBE-specific details. We note that every QBE

query can be expressed in SQL; in fact, QMF supports a command called CONVERT

that generates an SQL query from a QBE query.

We will present a number of example queries using the following schema:

Sailors(sid: integer, sname: string, rating: integer, age: real)

177

178 Chapter 6

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: dates)

The key fields are underlined, and the domain of each field is listed after the field name.

We introduce QBE queries in Section 6.2 and consider queries over multiple relations

in Section 6.3. We consider queries with set-difference in Section 6.4 and queries

with aggregation in Section 6.5. We discuss how to specify complex constraints in

Section 6.6. We show how additional computed fields can be included in the answer in

Section 6.7. We discuss update operations in QBE in Section 6.8. Finally, we consider

relational completeness of QBE and illustrate some of the subtleties of QBE queries

with negation in Section 6.9.

6.2 BASIC QBE QUERIES

A user writes queries by creating example tables. QBE uses domain variables, as in

the DRC, to create example tables. The domain of a variable is determined by the

column in which it appears, and variable symbols are prefixed with underscore () to

distinguish them from constants. Constants, including strings, appear unquoted, in

contrast to SQL. The fields that should appear in the answer are specified by using

the command P., which stands for print. The fields containing this command are

analogous to the target-list in the SELECT clause of an SQL query.

We introduce QBE through example queries involving just one relation. To print the

names and ages of all sailors, we would create the following example table:

Sailors sid sname rating age

P. N P. A

A variable that appears only once can be omitted; QBE supplies a unique new name

internally. Thus the previous query could also be written by omitting the variables

N and A, leaving just P. in the sname and age columns. The query corresponds to

the following DRC query, obtained from the QBE query by introducing existentially

quantified domain variables for each field.

{〈N, A〉 | ∃I, T (〈I, N, T, A〉 ∈ Sailors)}

A large class of QBE queries can be translated to DRC in a direct manner. (Of course,

queries containing features such as aggregate operators cannot be expressed in DRC.)

We will present DRC versions of several QBE queries. Although we will not define the

translation from QBE to DRC formally, the idea should be clear from the examples;

Query-by-Example (QBE) 179

intuitively, there is a term in the DRC query for each row in the QBE query, and the

terms are connected using ∧.1

A convenient shorthand notation is that if we want to print all fields in some relation,

we can place P. under the name of the relation. This notation is like the SELECT *

convention in SQL. It is equivalent to placing a P. in every field:

Sailors sid sname rating age

P.

Selections are expressed by placing a constant in some field:

Sailors sid sname rating age

P. 10

Placing a constant, say 10, in a column is the same as placing the condition =10. This

query is very similar in form to the equivalent DRC query

{〈I, N, 10, A〉 | 〈I, N, 10, A〉 ∈ Sailors}

We can use other comparison operations (<, >, <=, >=,¬) as well. For example, we

could say < 10 to retrieve sailors with a rating less than 10 or say ¬10 to retrieve

sailors whose rating is not equal to 10. The expression ¬10 in an attribute column is

the same as 6= 10. As we will see shortly, ¬ under the relation name denotes (a limited

form of) ¬∃ in the relational calculus sense.

6.2.1 Other Features: Duplicates, Ordering Answers

We can explicitly specify whether duplicate tuples in the answer are to be eliminated

(or not) by putting UNQ. (respectively ALL.) under the relation name.

We can order the presentation of the answers through the use of the .AO (for ascending

order) and .DO commands in conjunction with P. An optional integer argument allows

us to sort on more than one field. For example, we can display the names, ages, and

ratings of all sailors in ascending order by age, and for each age, in ascending order by

rating as follows:

Sailors sid sname rating age

P. P.AO(2) P.AO(1)

1The semantics of QBE is unclear when there are several rows containing P. or if there are rows

that are not linked via shared variables to the row containing P. We will discuss such queries in Section

6.6.1.

180 Chapter 6

6.3 QUERIES OVER MULTIPLE RELATIONS

To find sailors with a reservation, we have to combine information from the Sailors and

the Reserves relations. In particular we have to select tuples from the two relations

with the same value in the join column sid. We do this by placing the same variable

in the sid columns of the two example relations.

Sailors sid sname rating age

Id P. S

Reserves sid bid day

Id

To find sailors who have reserved a boat for 8/24/96 and who are older than 25, we

could write:2

Sailors sid sname rating age

Id P. S > 25

Reserves sid bid day

Id ‘8/24/96’

Extending this example, we could try to find the colors of Interlake boats reserved by

sailors who have reserved a boat for 8/24/96 and who are older than 25:

Sailors sid sname rating age

Id > 25

Reserves sid bid day

Id B ‘8/24/96’

Boats bid bname color

B Interlake P.

As another example, the following query prints the names and ages of sailors who have

reserved some boat that is also reserved by the sailor with id 22:

Sailors sid sname rating age

Id P. N

Reserves sid bid day

Id B

22 B

Each of the queries in this section can be expressed in DRC. For example, the previous

query can be written as follows:

{〈N〉 | ∃Id, T, A, B, D1, D2(〈Id, N, T, A〉 ∈ Sailors

∧〈Id, B, D1〉 ∈ Reserves ∧ 〈22, B, D2〉 ∈ Reserves)}

2Incidentally, note that we have quoted the date value. In general, constants are not quoted in

QBE. The exceptions to this rule include date values and string values with embedded blanks or

special characters.

Query-by-Example (QBE) 181

Notice how the only free variable (N) is handled and how Id and B are repeated, as

in the QBE query.

6.4 NEGATION IN THE RELATION-NAME COLUMN

We can print the names of sailors who do not have a reservation by using the ¬

command in the relation name column:

Sailors sid sname rating age

Id P. S

Reserves sid bid day

¬ Id

This query can be read as follows: “Print the sname field of Sailors tuples such that

there is no tuple in Reserves with the same value in the sid field.” Note the importance

of sid being a key for Sailors. In the relational model, keys are the only available means

for unique identification (of sailors, in this case). (Consider how the meaning of this

query would change if the Reserves schema contained sname—which is not a key!—

rather than sid, and we used a common variable in this column to effect the join.)

All variables in a negative row (i.e., a row that is preceded by ¬) must also appear

in positive rows (i.e., rows not preceded by ¬). Intuitively, variables in positive rows

can be instantiated in many ways, based on the tuples in the input instances of the

relations, and each negative row involves a simple check to see if the corresponding

relation contains a tuple with certain given field values.

The use of ¬ in the relation-name column gives us a limited form of the set-difference

operator of relational algebra. For example, we can easily modify the previous query

to find sailors who are not (both) younger than 30 and rated higher than 4:

Sailors sid sname rating age

Id P. S

Sailors sid sname rating age

¬ Id > 4 < 30

This mechanism is not as general as set-difference, because there is no way to control

the order in which occurrences of ¬ are considered if a query contains more than one

occurrence of ¬. To capture full set-difference, views can be used. (The issue of QBE’s

relational completeness, and in particular the ordering problem, is discussed further in

Section 6.9.)

6.5 AGGREGATES

Like SQL, QBE supports the aggregate operations AVG., COUNT., MAX., MIN., and SUM.

By default, these aggregate operators do not eliminate duplicates, with the exception

182 Chapter 6

of COUNT., which does eliminate duplicates. To eliminate duplicate values, the variants

AVG.UNQ. and SUM.UNQ. must be used. (Of course, this is irrelevant for MIN. and MAX.)

Curiously, there is no variant of COUNT. that does not eliminate duplicates.

Consider the instance of Sailors shown in Figure 6.1. On this instance the following

sid sname rating age

22 dustin 7 45.0

58 rusty 10 35.0

44 horatio 7 35.0

Figure 6.1 An Instance of Sailors

query prints the value 38.3:

Sailors sid sname rating age

A P.AVG. A

Thus, the value 35.0 is counted twice in computing the average. To count each age

only once, we could specify P.AVG.UNQ. instead, and we would get 40.0.

QBE supports grouping, as in SQL, through the use of the G. command. To print

average ages by rating, we could use:

Sailors sid sname rating age

G.P. A P.AVG. A

To print the answers in sorted order by rating, we could use G.P.AO or G.P.DO. instead.

When an aggregate operation is used in conjunction with P., or there is a use of the

G. operator, every column to be printed must specify either an aggregate operation or

the G. operator. (Note that SQL has a similar restriction.) If G. appears in more than

one column, the result is similar to placing each of these column names in the GROUP

BY clause of an SQL query. If we place G. in the sname and rating columns, all tuples

in each group have the same sname value and also the same rating value.

We consider some more examples using aggregate operations after introducing the

conditions box feature.

Query-by-Example (QBE) 183

6.6 THE CONDITIONS BOX

Simple conditions can be expressed directly in columns of the example tables. For

more complex conditions QBE provides a feature called a conditions box.

Conditions boxes are used to do the following:

Express a condition involving two or more columns, such as R/ A > 0.2.

Express a condition involving an aggregate operation on a group, for example,

AVG. A > 30. Notice that this use of a conditions box is similar to the HAVING

clause in SQL. The following query prints those ratings for which the average age

is more than 30:

Sailors sid sname rating age

G.P. A

Conditions

AVG. A > 30

As another example, the following query prints the sids of sailors who have reserved

all boats for which there is some reservation:

Sailors sid sname rating age

P.G. Id

Reserves sid bid day

Id B1

B2

Conditions

COUNT. B1 = COUNT. B2

For each Id value (notice the G. operator), we count all B1 values to get the

number of (distinct) bid values reserved by sailor Id. We compare this count

against the count of all B2 values, which is simply the total number of (distinct)

bid values in the Reserves relation (i.e., the number of boats with reservations).

If these counts are equal, the sailor has reserved all boats for which there is some

reservation. Incidentally, the following query, intended to print the names of such

sailors, is incorrect:

Sailors sid sname rating age

P.G. Id P.

Reserves sid bid day

Id B1

B2

Conditions

COUNT. B1 = COUNT. B2

184 Chapter 6

The problem is that in conjunction with G., only columns with either G. or an

aggregate operation can be printed. This limitation is a direct consequence of the

SQL definition of GROUPBY, which we discussed in Section 5.5.1; QBE is typically

implemented by translating queries into SQL. If P.G. replaces P. in the sname

column, the query is legal, and we then group by both sid and sname, which

results in the same groups as before because sid is a key for Sailors.

Express conditions involving the AND and OR operators. We can print the names

of sailors who are younger than 20 or older than 30 as follows:

Sailors sid sname rating age

P. A

Conditions

A < 20 OR 30 < A

We can print the names of sailors who are both younger than 20 and older than

30 by simply replacing the condition with A < 20 AND 30 < A; of course, the

set of such sailors is always empty! We can print the names of sailors who are

either older than 20 or have a rating equal to 8 by using the condition 20 < A OR

R = 8, and placing the variable R in the rating column of the example table.

6.6.1 And/Or Queries

It is instructive to consider how queries involving AND and OR can be expressed in QBE

without using a conditions box. We can print the names of sailors who are younger

than 30 or older than 20 by simply creating two example rows:

Sailors sid sname rating age

P. < 30

P. > 20

To translate a QBE query with several rows containing P., we create subformulas for

each row with a P. and connect the subformulas through ∨. If a row containing P. is

linked to other rows through shared variables (which is not the case in this example),

the subformula contains a term for each linked row, all connected using ∧. Notice how

the answer variable N , which must be a free variable, is handled:

{〈N〉 | ∃I1, N1, T1, A1, I2, N2, T2, A2(

〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∨〈I2, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}

To print the names of sailors who are both younger than 30 and older than 20, we use

the same variable in the key fields of both rows:

Query-by-Example (QBE) 185

Sailors sid sname rating age

Id P. < 30

Id > 20

The DRC formula for this query contains a term for each linked row, and these terms

are connected using ∧:

{〈N〉 | ∃I1, N1, T1, A1, N2, T2, A2

(〈I1, N1, T1, A1〉 ∈ Sailors(A1 < 30 ∧ N = N1)

∧〈I1, N2, T2, A2〉 ∈ Sailors(A2 > 20 ∧ N = N2))}

Compare this DRC query with the DRC version of the previous query to see how

closely they are related (and how closely QBE follows DRC).

6.7 UNNAMED COLUMNS

If we want to display some information in addition to fields retrieved from a relation, we

can create unnamed columns for display.3 As an example—admittedly, a silly one!—we

could print the name of each sailor along with the ratio rating/age as follows:

Sailors sid sname rating age

P. R A P. R / A

All our examples thus far have included P. commands in exactly one table. This is a

QBE restriction. If we want to display fields from more than one table, we have to use

unnamed columns. To print the names of sailors along with the dates on which they

have a boat reserved, we could use the following:

Sailors sid sname rating age

Id P. P. D

Reserves sid bid day

Id D

Note that unnamed columns should not be used for expressing conditions such as

D >8/9/96; a conditions box should be used instead.

6.8 UPDATES

Insertion, deletion, and modification of a tuple are specified through the commands

I., D., and U., respectively. We can insert a new tuple into the Sailors relation as

follows:

3A QBE facility includes simple commands for drawing empty example tables, adding fields, and

so on. We do not discuss these features but assume that they are available.

186 Chapter 6

Sailors sid sname rating age

I. 74 Janice 7 41

We can insert several tuples, computed essentially through a query, into the Sailors

relation as follows:

Sailors sid sname rating age

I. Id N A

Students sid name login age

Id N A

Conditions

A > 18 OR N LIKE ‘C%’

We insert one tuple for each student older than 18 or with a name that begins with C.

(QBE’s LIKE operator is similar to the SQL version.) The rating field of every inserted

tuple contains a null value. The following query is very similar to the previous query,

but differs in a subtle way:

Sailors sid sname rating age

I. Id1 N1 A1

I. Id2 N2 A2

Students sid name login age

Id1 N1 A1 > 18

Id2 N2 LIKE ‘C%’ A2

The difference is that a student older than 18 with a name that begins with ‘C’ is

now inserted twice into Sailors. (The second insertion will be rejected by the integrity

constraint enforcement mechanism because sid is a key for Sailors. However, if this

integrity constraint is not declared, we would find two copies of such a student in the

Sailors relation.)

We can delete all tuples with rating > 5 from the Sailors relation as follows:

Sailors sid sname rating age

D. > 5

We can delete all reservations for sailors with rating < 4 by using:

Query-by-Example (QBE) 187

Sailors sid sname rating age

Id < 4

Reserves sid bid day

D. Id

We can update the age of the sailor with sid 74 to be 42 years by using:

Sailors sid sname rating age

74 U.42

The fact that sid is the key is significant here; we cannot update the key field, but we

can use it to identify the tuple to be modified (in other fields). We can also change

the age of sailor 74 from 41 to 42 by incrementing the age value:

Sailors sid sname rating age

74 U. A+1

6.8.1 Restrictions on Update Commands

There are some restrictions on the use of the I., D., and U. commands. First, we

cannot mix these operators in a single example table (or combine them with P.).

Second, we cannot specify I., D., or U. in an example table that contains G. Third,

we cannot insert, update, or modify tuples based on values in fields of other tuples in

the same table. Thus, the following update is incorrect:

Sailors sid sname rating age

john U. A+1

joe A

This update seeks to change John’s age based on Joe’s age. Since sname is not a key,

the meaning of such a query is ambiguous—should we update every John’s age, and

if so, based on which Joe’s age? QBE avoids such anomalies using a rather broad

restriction. For example, if sname were a key, this would be a reasonable request, even

though it is disallowed.

6.9 DIVISION AND RELATIONAL COMPLETENESS *

In Section 6.6 we saw how division can be expressed in QBE using COUNT. It is instruc-

tive to consider how division can be expressed in QBE without the use of aggregate

operators. If we don’t use aggregate operators, we cannot express division in QBE

without using the update commands to create a temporary relation or view. However,

188 Chapter 6

taking the update commands into account, QBE is relationally complete, even without

the aggregate operators. Although we will not prove these claims, the example that

we discuss below should bring out the underlying intuition.

We use the following query in our discussion of division:

Find sailors who have reserved all boats.

In Chapter 4 we saw that this query can be expressed in DRC as:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ∀〈B, BN, C〉 ∈ Boats

(∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

The ∀ quantifier is not available in QBE, so let us rewrite the above without ∀:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈B, BN, C〉 ∈ Boats

(¬∃〈Ir, Br, D〉 ∈ Reserves(I = Ir ∧ Br = B))}

This calculus query can be read as follows: “Find Sailors tuples (with sid I) for which

there is no Boats tuple (with bid B) such that no Reserves tuple indicates that sailor

I has reserved boat B.” We might try to write this query in QBE as follows:

Sailors sid sname rating age

Id P. S

Boats bid bname color

¬ B

Reserves sid bid day

¬ Id B

This query is illegal because the variable B does not appear in any positive row.

Going beyond this technical objection, this QBE query is ambiguous with respect to

the ordering of the two uses of ¬. It could denote either the calculus query that we

want to express or the following calculus query, which is not what we want:

{〈I, N, T, A〉 | 〈I, N, T, A〉 ∈ Sailors ∧ ¬∃〈Ir, Br, D〉 ∈ Reserves

(¬∃〈B, BN, C〉 ∈ Boats(I = Ir ∧ Br = B))}

There is no mechanism in QBE to control the order in which the ¬ operations in

a query are applied. (Incidentally, the above query finds all Sailors who have made

reservations only for boats that exist in the Boats relation.)

One way to achieve such control is to break the query into several parts by using

temporary relations or views. As we saw in Chapter 4, we can accomplish division in

Query-by-Example (QBE) 189

two logical steps: first, identify disqualified candidates, and then remove this set from

the set of all candidates. In the query at hand, we have to first identify the set of sids

(called, say, BadSids) of sailors who have not reserved some boat (i.e., for each such

sailor, we can find a boat not reserved by that sailor), and then we have to remove

BadSids from the set of sids of all sailors. This process will identify the set of sailors

who’ve reserved all boats. The view BadSids can be defined as follows:

Sailors sid sname rating age

Id

Reserves sid bid day

¬ Id B

Boats bid bname color

B

BadSids sid

I. Id

Given the view BadSids, it is a simple matter to find sailors whose sids are not in this

view.

The ideas in this example can be extended to show that QBE is relationally complete.

6.10 POINTS TO REVIEW

QBE is a user-friendly query language with a graphical interface. The interface

depicts each relation in tabular form. (Section 6.1)

Queries are posed by placing constants and variables into individual columns and

thereby creating an example tuple of the query result. Simple conventions are

used to express selections, projections, sorting, and duplicate elimination. (Sec-

tion 6.2)

Joins are accomplished in QBE by using the same variable in multiple locations.

(Section 6.3)

QBE provides a limited form of set difference through the use of ¬ in the relation-

name column. (Section 6.4)

Aggregation (AVG., COUNT., MAX., MIN., and SUM.) and grouping (G.) can be

expressed by adding prefixes. (Section 6.5)

The condition box provides a place for more complex query conditions, although

queries involving AND or OR can be expressed without using the condition box.

(Section 6.6)

New, unnamed fields can be created to display information beyond fields retrieved

from a relation. (Section 6.7)

190 Chapter 6

QBE provides support for insertion, deletion and updates of tuples. (Section 6.8)

Using a temporary relation, division can be expressed in QBE without using ag-

gregation. QBE is relationally complete, taking into account its querying and

view creation features. (Section 6.9)

EXERCISES

Exercise 6.1 Consider the following relational schema. An employee can work in more than

one department.

Emp(eid: integer, ename: string, salary: real)

Works(eid: integer, did: integer)

Dept(did: integer, dname: string, managerid: integer, floornum: integer)

Write the following queries in QBE. Be sure to underline your variables to distinguish them

from your constants.

1. Print the names of all employees who work on the 10th floor and make less than $50,000.

2. Print the names of all managers who manage three or more departments on the same

floor.

3. Print the names of all managers who manage 10 or more departments on the same floor.

4. Give every employee who works in the toy department a 10 percent raise.

5. Print the names of the departments that employee Santa works in.

6. Print the names and salaries of employees who work in both the toy department and the

candy department.

7. Print the names of employees who earn a salary that is either less than $10,000 or more

than $100,000.

8. Print all of the attributes for employees who work in some department that employee

Santa also works in.

9. Fire Santa.

10. Print the names of employees who make more than $20,000 and work in either the video

department or the toy department.

11. Print the names of all employees who work on the floor(s) where Jane Dodecahedron

works.

12. Print the name of each employee who earns more than the manager of the department

that he or she works in.

13. Print the name of each department that has a manager whose last name is Psmith and

who is neither the highest-paid nor the lowest-paid employee in the department.

Exercise 6.2 Write the following queries in QBE, based on this schema:

Query-by-Example (QBE) 191

Suppliers(sid: integer, sname: string, city: string)

Parts(pid: integer, pname: string, color: string)

Orders(sid: integer, pid: integer, quantity: integer)

1. For each supplier from whom all of the following things have been ordered in quantities

of at least 150, print the name and city of the supplier: a blue gear, a red crankshaft,

and a yellow bumper.

2. Print the names of the purple parts that have been ordered from suppliers located in

Madison, Milwaukee, or Waukesha.

3. Print the names and cities of suppliers who have an order for more than 150 units of a

yellow or purple part.

4. Print the pids of parts that have been ordered from a supplier named American but have

also been ordered from some supplier with a different name in a quantity that is greater

than the American order by at least 100 units.

5. Print the names of the suppliers located in Madison. Could there be any duplicates in

the answer?

6. Print all available information about suppliers that supply green parts.

7. For each order of a red part, print the quantity and the name of the part.

8. Print the names of the parts that come in both blue and green. (Assume that no two

distinct parts can have the same name and color.)

9. Print (in ascending order alphabetically) the names of parts supplied both by a Madison

supplier and by a Berkeley supplier.

10. Print the names of parts supplied by a Madison supplier, but not supplied by any Berkeley

supplier. Could there be any duplicates in the answer?

11. Print the total number of orders.

12. Print the largest quantity per order for each sid such that the minimum quantity per

order for that supplier is greater than 100.

13. Print the average quantity per order of red parts.

14. Can you write this query in QBE? If so, how?

Print the sids of suppliers from whom every part has been ordered.

Exercise 6.3 Answer the following questions:

1. Describe the various uses for unnamed columns in QBE.

2. Describe the various uses for a conditions box in QBE.

3. What is unusual about the treatment of duplicates in QBE?

4. Is QBE based upon relational algebra, tuple relational calculus, or domain relational

calculus? Explain briefly.

5. Is QBE relationally complete? Explain briefly.

6. What restrictions does QBE place on update commands?

192 Chapter 6

PROJECT-BASED EXERCISES

Exercise 6.4 Minibase’s version of QBE, called MiniQBE, tries to preserve the spirit of

QBE but cheats occasionally. Try the queries shown in this chapter and in the exercises,

and identify the ways in which MiniQBE differs from QBE. For each QBE query you try in

MiniQBE, examine the SQL query that it is translated into by MiniQBE.

BIBLIOGRAPHIC NOTES

The QBE project was led by Moshe Zloof [702] and resulted in the first visual database query

language, whose influence is seen today in products such as Borland’s Paradox and, to a

lesser extent, Microsoft’s Access. QBE was also one of the first relational query languages

to support the computation of transitive closure, through a special operator, anticipating

much subsequent research into extensions of relational query languages to support recursive

queries. A successor called Office-by-Example [701] sought to extend the QBE visual interac-

tion paradigm to applications such as electronic mail integrated with database access. Klug

presented a version of QBE that dealt with aggregate queries in [377].

